The Microbial Opsin Homolog Sop1 is involved in Sclerotinia sclerotiorum Development and Environmental Stress Response
نویسندگان
چکیده
Microbial opsins play a crucial role in responses to various environmental signals. Here, we report that the microbial opsin homolog gene sop1 from the necrotrophic phytopathogenic fungus Sclerotinia sclerotiorum was dramatically up-regulated during infection and sclerotial development compared with the vegetative growth stage. Further, study showed that sop1 was essential for growth, sclerotial development and full virulence of S. sclerotiorum. Sop1-silenced transformants were more sensitive to high salt stress, fungicides and high osmotic stress. However, they were more tolerant to oxidative stress compared with the wild-type strain, suggesting that sop1 is involved in different stress responses and fungicide resistance, which plays a role in the environmental adaptability of S. sclerotiorum. Furthermore, a Delta blast search showed that microbial opsins are absent from the genomes of animals and most higher plants, indicating that sop1 is a potential drug target for disease control of S. sclerotiorum.
منابع مشابه
Expression Pattern of the Synthetic Pathogen-Inducible Promoter (SynP-FF) in the Transgenic Canola in Response to Sclerotinia sclerotiorum
Sclerotinia sclerotiorum is a phytopathogenic fungus which causes serious yield losses in canola. A pathogen inducible-promoter can facilitate the production of Sclerotinia-resistant transgenic canola plants. Inthis study, the “gain of function approach” was adopted for the construction of a pathogen-inducible promoter.The synthetic promoter technique was used, which involved the in...
متن کاملMAPK regulation of sclerotial development in Sclerotinia sclerotiorum is linked with pH and cAMP sensing.
Sclerotial development is fundamental to the disease cycle of the omnivorous broad host range fungal phytopathogen Sclerotinia sclerotiorum. We have isolated a highly conserved homolog of ERK-type mitogen-activated protein kinases (MAPKs) from S. sclerotiorum (Smk1) and have demonstrated that Smk1 is required for sclerotial development. The smk1 transcription and MAPK enzyme activity are induce...
متن کاملThe Effect of Oxalic Acid, the Pathogenicity Factor of Sclerotinia sclerotiorum on the Two Susceptible and Moderately Resistant Lines of Sunfl ower
Background: One of the main sunfl ower diseases is the white mold Sclerotinia sclerotiorum. The oxalic acid (OA), which is one of the main pathogenicity factors of this fungus, beside the direct toxicity on the host, has other functions such as the disruption of the cell wall and chelating out the calcium ions.Objectives: Regarding the importance of this disease, it is im...
متن کاملIdentification of Microsatellite Markers Linked with Genomic Regions Involved in Resistance to Basal Stem Rot Disease Isolates in Oily Sunflower (Helianthus annuus L.) under Controlled Conditions
Sunflower (Helianthus annuus L.) is an important crop that its oil has nutritional and high economic value. Basal stem rot, caused by Sclerotinia sclerotiorum and S. minor, is one of the important and devastating disease of sunflower. The use of resistant cultivars is considered as the most important and effective method to control the disease. In this study, the reaction of 100 oily sunflower ...
متن کاملComparative transcriptomic analysis uncovers the complex genetic network for resistance to Sclerotinia sclerotiorum in Brassica napus
Sclerotinia stem rot caused by Sclerotinia sclerotiorum is one of the most devastating diseases in many important crops including Brassica napus worldwide. Quantitative resistance is the only source for genetic improvement of Sclerotinia-resistance in B. napus, but the molecular basis for such a resistance is largely unknown. Here, we performed dynamic transcriptomic analyses to understand the ...
متن کامل